
3PixelRule_Gray.tiff ¬
Jim Million uunet!wiltel!jmillion October 1992

WrapperInspector (v1.0)

WrapperInspector is a custom WorkspaceManager Contents Inspector. It registers with WM
to manage inspection of 'wrapped' (also refered to as 'bundled') WM files. Bundles appear as
files in WM when in fact, they are actually directories. For example, .app, .bundle, .rtfd are
bundled files. Normally, you have to 'Open As Folder' to see into these wrappers.

WrapperInspector displays a bundle's contents in a browser. You may select entries in this
browser to 'sub' inspect (for example, you may view .tiff images, or play .snd files). You may
also 'Open' the file with its default application, and/or 'Open As Folder' if it is a directory. You
may extend WrapperInspector by registering other wrapper types with WM, creating new
subinspectors to handle other file types, and registering additional file types with existing
subinspectors.

876954_PixelRule_Gray.tiff ¬

Important Files...
paste.tiff ¬ bundle.registy contains registration info (tells WM which files this inspector will
inspect).
74015_paste.tiff ¬ Makefile.preamble loads bundle.registry info into the _ICON section of the
Mach-o file.
391187_paste.tiff ¬ WrapperInspector.[hm] is the owner of the bundle nib file
(WrapperInspector.nib). It
 manages inspection and coordinates 'sub' inspection of the registered files.
391017_paste.tiff ¬ DefaultSubInspector.[hm] is an abstract superclass provided for all
subinspectors.
 Subinspectors provide simple inspection for specified file types found in the wrapper.

188764_paste.tiff ¬ ImageSubInspector.[hm] inspects image files.
225814_paste.tiff ¬ TextSubInspector.[hm] inspects specified text files.
424989_paste.tiff ¬ SoundSubInspector.[hm] inspects sound files.
972586_paste.tiff ¬ WrapperInspector.nib is the interface file for the main and subinspectors.
317905_paste.tiff ¬ Inspector.strings contains key/value pairs where key equal file extension
and value
 equal the class name of the subinspector class responsible for managing subinspection.

Installation
WrapperInspector overrides WM's default contents inspection which allows you to 'sort' the
contents of the selected wrapper.

To install, copy WrapperInspector.bundle into ~Apps (or anywhere in WM's search path -
NextApps, LocalApps, etc.). WM will look into the bundle when you do the copy, and register
the specified file types (extensions) at that time (first load takes a moment).

To unload, remove the bundle from the search path, log out. Upon next login, bundle will not
be loaded.

To reload, replace the existing bundle, log out. New bundle will be loaded upon next login.

Registered Wrappers
The following extensions are currently registered for inspection:

app palette font nib
bundle addresses clr mbox
preferences pkg service dbmodel

To add an extension:
1] Append the following line to bundle.registry:
 {type=InspectorCommand; mode=contents; extension=YourExtension;
 selp=selectionOneOnly; class=WrapperInspector}

2] Rebuild project (PB.project found in the WrapperInspector folder).
3] Install WrapperInspector.bundle.

To delete an extension:
1] Remove the line containing the unwanted extension from bundle.registry.
2] Rebuild project (PB.project found in the WrapperInspector folder).
3] Install WrapperInspector.bundle.

Adding A New SubInspector
1] Create a subclass of DefaultSubInspector (Suggest naming as [Type]SubInspector. I
 originally used ImageInspector and SoundInspector and found these already existed
 within WM, hence use of 'Sub'Inspector.). Your subinspector should override
 DefaultSubInspector where specific behavior is required (see existing for example).
2] Add [hm] to ProjectBuilder (project is in WrapperInspector folder - PB.project).
3] Open WrapperInspector.nib (in English.lproj), parse interface file into IB, and
 'instantiate' an instance of your subclass.
4] Create an interface contained within a Box or Window (see existing for size, etc.).
5] Connect your subinspector's 'inspectorView' instance variable to the Box or Window
 instance containing your interface components. The 'contentView' of this instance
 variable is what is returned to WrapperInspector in the method 'inspectorView' and
 subsequently displayed.
6] Register the file types (extensions) that your subinspector will inspect. Do this in IB by
 inspecting the 'Attributes' of the NXStringTable instance (InspectorStrings). The key is
 is the file extension. The value is the classname of your subinspector. Add as many
 entries as you wish. Save these changes to the file Inspector.strings (in English.lproj).
 (Answer Yes to 'Do you want to Replace').
7] Rebuild Project and install.

To add or delete filetypes registered for subinspection, perform step 6 and 7.

How WrapperInspector interacts with subinspectors...
When a file is selected in WrapperInspector's browser, it tries to find a match for the file's
extension in the NXStringTable (containing extensions/classnames). If a match is found, a

look-up is performed in the run-time for the classname. If found, the class method 'new' is
sent to the Class id. If an instance is returned, the instance is sent the message
'inspectorView' which returns the View that WrapperInspector displays. The instance is then
sent the message 'inspect:' with the full pathname of the selection as the argument. Your
subinspector then performs the appropriate inspection.

Notes...
532857_paste.tiff ¬ The 'Open' and 'Open As Folder' methods produce inconsistent
performance
 behavior. These operations takes either a few seconds (usually true), or at least 45
 seconds (seems to be some time-out value). This is understandable (but irritating) as it
 seems WM is contending for its own resources. WrapperInspector uses the 3.0 object
 'workspace' (WorkspaceRequest protocol) in performing these. Optimization,
 delayed performs, and 2.1 Speaker/Listener style were tried, but did not help (and were
 taken out to keep code simple).
222474_paste.tiff ¬ The TextSubInspector display behaves incorrectly at times. This seems
to occur only
 occasionally when scrolling large (usually rtf[d]) documents. Changing window
 buffering did not seem to help.
797099_paste.tiff ¬ It is unfortunate that you cannot register with WM for files that do not
have extensions
 (e.g. Makefile). It is also unfortunate that I perpetuated this with the subinspectors. If
 you desire other behavior, alter the method 'fileSelected:' in WrapperInspector.m.
64463_paste.tiff ¬ RTFD bundles were not registered.
667372_paste.tiff ¬ The WrapperInspector browser only allows single selection.

Documentation
NeXT documentation on custom WorkspaceManager Contents Inspectors...
GeneralRef/19_WorkspaceManager/IntroWorkspace.rtf
GeneralRef/19_WorkspaceManager/Classes/WMInspector.rtf

843721_paste.tiff ¬

